HYDRO ENERGY POTENTIAL OF COOLING WATER AT THE THERMAL POWER PLANT

Vladimir D. Stevanovic*), Aleksandar Gajic*), Ljubodrag Savic**), Vladan Kuzmanovic**), Dusan Arnautovic***), Tina Dasic**), Blazenka Maslovaric*), Sanja Prica*), Bojan Milovanovic**)

*) Faculty of Mechanical Engineering, University of Belgrade
**) Faculty of Civil Engineering, University of Belgrade
***) Electrotechnical Institute “Nikola Tesla”
A HYDRO POWER PLANT WITH A GENERATION CAPACITY OF 7.5 MWE USES THE AVAILABLE HYDRO ENERGY OF THE SEA WATER, WHICH SERVES AS A COOLANT FOR EIGHT UNITS OF A THERMAL POWER PLANT IN SOUTH KOREA

Reduction of carbon emissions by 13715 tons annually.

ELEKTRANE 2010, Vrnjačka Banja
A PLANT WITH TWO HYDRO TURBINES WITH A POWER OF 5 MWe EACH HAS BEEN BUILT AT THE KOZLODUY NUCLEAR POWER PLANT IN BULGARIA

KOZLODUY NPP REVIEW

The English language bulletin of Kozloduy Nuclear Power Plant

Kozloduy NPP started the hydro power plant project

A new hydroelectric power plant is under construction on the Kozloduy NPP’s site. It is situated near the Bank Pumping Station and will be supplied with water from the cooling systems of Units 5 and 6.
THE COOLING WATER SYSTEM AT ONE UNIT OF THE THERMAL POWER PLANT “NIKOLA TESLA B”
AVERAGED WATER LEVEL OF THE RIVER SAVA DURING THE YEAR BASED ON THE 20 YEARS DAILY RECORDS (FROM 1986 TILL 2006)

- Monthly mean values
- Annual mean value

Water level (m)

Months

ELEKTRANE 2010, Vrnjačka Banja

- Monthly mean values
- Annual mean value

ELEKTRANE 2010, Vrnjačka Banja
DISCHARGE COOLING WATER CHANNELS FROM THE POOLS AT THE PLANT UNITS TILL THE RIVER
# HEAD LOSSES

## LENGTH OF THE COOLING WATER DISCHARGE CHANNEL

<table>
<thead>
<tr>
<th>UNIT of TENT B</th>
<th>UNIT 1</th>
<th>UNIT 2</th>
<th>UNIT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGHT $L_{1-4}$ (m)</td>
<td>470</td>
<td>545</td>
<td>620$^{1)}$</td>
</tr>
</tbody>
</table>

$^{1)}$ Assumed

## HEAD LOSS

<table>
<thead>
<tr>
<th>UNIT of TENT B</th>
<th>UNIT 1</th>
<th>UNIT 2</th>
<th>UNIT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta H_g = H_b - H_n$ (m)</td>
<td>1.19</td>
<td>1.28</td>
<td>1.38</td>
</tr>
</tbody>
</table>

---

Graph showing duration curves for gross and net heads. The horizontal axis represents the annual period (in hours), ranging from 0 to 8760 hours. The vertical axis represents the head in meters, ranging from 0 to 8 meters.

Key points:
1. Gross head
2. Net head

Annual period (h) on the x-axis.
Head (m) on the y-axis.

Delta H_l indicated as a difference in heads.
AVERAGE MONTHLY OVERHAUL PERIODS DURING THE YEAR PER ONE UNIT OF THE THERMAL POWER PLANT “NIKOLA TESLA B” (AVERAGED FROM THE FIRST CONNECTION TO THE GRID IN 1984 (UNIT 1) AND 1986 (UNIT 2) TILL JUNE 2007)
THE REDUCTION OF THE ELECTRICITY PRODUCTION AT THE HYDRO POWER PLANT DUE TO THE OVERHAULS IN ONE UNIT OF THE THERMAL POWER PLANT “NIKOLA TESLA B” (TOTAL ANNUAL REDUCTION IS 0.3052 GWH OF ELECTRICITY PRODUCTION IN CASE OF NO OVERHAUL PERIODS)
TURBINE’S TYPE FIELD OF APPLICATION

HYDRO POWER PLANT LAYOUT

Legend:
1. Cooling water flow
2. The existing outlet structure
3. The existing earth channel
4. The intake structure with the chamber
5. Power house
6. Tail water
7. Emergency spillway
8. Chute
9. Gate plateau
10. Access to powerhouse
11. The existing road
12. A pipeline for the heating of equipment in the cooling water intake station during extremely cold winter days.
HYDRO POWER PLANT CROSS-SECTION
ANNUAL ELECTRICITY PRODUCTION

\[ E_{el} = 8.76 \cdot \rho \cdot g \cdot \dot{V} \cdot \eta_{HE} \cdot \int_{0}^{1} H(x) \, dx - \Delta E_{r} \]

\[ H(x) = \begin{cases} H_{n,\max}, & H_{n}(x) > H_{n,\max} \\ H_{n}(x), & H_{n,\min} \leq H_{n}(x) \leq H_{n,\max} \\ 0, & H_{n}(x) < H_{n,\min} \end{cases} \]

ANNUAL ELECTRICITY PRODUCTION IN THE HYDRO POWER PLANT DEPENDING ON THE NUMBER OF UNITS IN OPERATION

<table>
<thead>
<tr>
<th>Units of Thermal Power Plant in operation</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Units 1+2</th>
<th>Units 1+2+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual production of electricity ( E_{ep} ) (GWh/god)</td>
<td>3.88</td>
<td>3.78</td>
<td>7.45</td>
<td>10.83</td>
</tr>
</tbody>
</table>
VALUE OF ANNUAL ELECTRICITY PRODUCTION IN THE HYDRO POWER PLANT THAT UTILIZES ENERGY OF THE COOLING WATER FLOW AT THE COAL-FIRED THERMAL POWER PLANT “NIKOLA TESLA B” VERSUS ELECTRICITY PRICE
## PRESENT VALUE OF COSTS

<table>
<thead>
<tr>
<th>Two turbines, $z=2$</th>
<th>Power per unit, $P_n$ (kW)</th>
<th>Total power, $zP_n$ (kW)</th>
<th>Specific cost of equipment, $I_{EM}$ (€/kW)</th>
<th>Total cost of equipment, $I_{EM}=zI_{EM}P_n$ (€)</th>
<th>Cost of civil works, $I_{CV}$ (€)</th>
<th>Total investment, $I$ (€)</th>
<th>Present value of O&amp;M costs, $C_{OM}$ (€)</th>
<th>Present value of total costs $C_T$ (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800</td>
<td>1600</td>
<td>1245</td>
<td>1.992.000</td>
<td>1.670.000</td>
<td>3.936.650</td>
<td>944.425</td>
<td>4.881.075</td>
</tr>
<tr>
<td>Three turbines, $z=3$</td>
<td>800</td>
<td>2400</td>
<td>1245</td>
<td>2.988.000</td>
<td>1.670.000</td>
<td>5.007350</td>
<td>1.258.600</td>
<td>6.265.950</td>
</tr>
</tbody>
</table>
INTERNAL RATE OF RETURN AND PAY BACK PERIOD FOR THE HYDRO POWER PLANT PROJECT THAT UTILIZES ENERGY OF THE COOLING WATER FLOW AT THE COAL-FIRED THERMAL POWER PLANT “NIKOLA TESLA B”

- Internal rate of return (%)
- Pay back period (years)

Electricity price (€/kWh)

Graph showing the relationship between electricity price and internal rate of return and pay back period for 2 and 3 units.
INTERNAL RATE OF RETURN AND PAY BACK PERIOD DEPENDENCE ON THE TOTAL INVESTMENT COSTS

![Graph showing the relationship between electricity price (€/kWh) and internal rate of return (years) and payback period (years). The graph includes three lines representing different total investment costs (0.8*I, 1.0*I, 1.2*I).]
INTERNAL RATE OF RETURN DEPENDENCE ON THE VALUE OF THE CERTIFIED EMISSION REDUCTION

Electricity price (€/kWh)

Internal rate of return (%)

- $C_{\text{CER}} = 15€$
- $C_{\text{CER}} = 10€$
- $C_{\text{CER}} = 6€$
- without CDM
CONCLUSION

The obtain results show that the project is economically attractive, and it can be realized with standard matured solutions of hydro turbines available at the market.